Scintillator Summary, New Thinking, Future Plans & Cost Update

Jeff Nelson Fermilab

- Reminder of current scintillator detector concepts and alternatives
 - > Revised M64 design (12m x 24m planes)
 - > Revised APD design (14.5m x 29m planes)
 - > Revised liquid version (14.5m x 29m; APD)
- Value engineering
- Labor for construction
- Cost summaries
- Issues to address

Basic Object

- For Solid scintillator and APDs shown to right
- For M64-based readout we'd use 12m modules and the lateral dimensions shrink accordingly
- Alternating view every 8"

885 planes

Evolution -> only top half

A detector "unit"

- · Units made from natural OSB dimensions
- 8" x 48ft x 8ft
- 2 or 3 pieces of wood in 7 layers (see Tom's explosion drawing)
- Two 32-strip modules which are 4ft x 48ft
- · Encased in wood and captured with clips

Module brackets

- This bracket holds the modules and acts as a spacer
- Made from stamped & folded steel
 - just like the MINOS "H" clips
 - > \$50/100 units
- A similar bracket captures the internal edge not may not be needed (but in costs)
- Slots allow for differential

expansion

module slips

Putting up the units

- Rigged two different ways for the two views
 - > Either a vacuum fixture or a strongback
- MINOS rigged lots of big heavy loads with 2.5mm position requirements
 - > 50m² & 22 ton (planes)
 - > 16m² & 6 ton (steel and scintillator loads)
- These objects are 40m² and 5ton (+fixture) with similar tolerances
- Crew of 5 can install a plane per shift
 - > 2 on each scissor lift to screw in the unit and survey + 1 operator

Mounting

- Collated Screw Driving Systems
 - > They go in faster that you can move your hand
 - > These will be used to attach the detector units
 - > Assume a standard subfloor mat for expansion compliance (spec is \(\frac{1}{4} \)" per 8ft) in lateral direction
- Like MINOS you survey & shim every 2 planes
 - > Vulcan point-n-shot survey
 - > Screw in shims to level to 3/8"

Labor for the unit fabrication

- This is involves moving board on roller beds, running through glue station, placement, adding modules with screws, activating jig clamps, placing compression grid, and moving for 30 min cure
 - > 4 person operation on 2 workstations per shift
- Materials come in at rate of 3 OBS trucks and 1 scintillator truck per day for 855 shifts
 - > Removes things with fork truck 1 operator per shift
- Run two shifts and work is just over 2 years
 - > Add in for sick/vacation + supervision + support
 - > Crew of people includes all mounting and passive labor

Labor FTE roll up

24	Plane / brick builders
4	QA / cablers
7	Support / supervision
_4	Receiving / staging
39	Total (for 2 years)

- Very comparable to MINOS in FTEs and schedule
 - > Could be stretched to better match factories an level labor over longer installation (e.g. 24 for 4 years)
- Cost as carpentry trade instead of iron workers for large fraction of construction crew

Other Changes

- Aluminum -> Steel skins (at same thickness)
- Step scintillator
- Simpler / smaller manifolds
- · New liquid scintillator extrusion dimensions

Cost of M64 Solid Scintillator

		ur	nit cost	per	quant	То	tal (\$M)
2.1.1	EDIA	\$	1,000,000		1.00	\$	1.0
2.1.2	OSB	\$	141.10	1000 lbs	103,240	\$	14.6
2.1.3	wood adhesive	\$	15.00	gal	85,245	\$	1.3
2.1.4	fasteners	\$	251.00	bx (6000)	679.68	\$	0.2
2.1.5	brackets	\$	0.50	each	509,760	\$	0.3
2.1.6	bookends	\$	42,000	bookend	12.00	\$	0.5
2.2.1.1	EDIA	\$	700,000		1.00	\$	0.7
2.2.1.2	strips	\$	2.68	m	9,943,990	\$	26.6
2.2.2	wls fiber	\$	0.56	m	21,247,341	\$	12.0
2.2.4.1	skin	\$	136	mod	25,896	\$	3.5
2.2.4.2	manifold	\$	100	mod	25,896	\$	2.6
2.2.4.3	connector	\$	5	mod	25,896	\$	0.1
2.2.4.4	comsumables	\$	200	mod	25,896	\$	5.2
2.2.5	factory set up	\$	500,000	factory	4.00	\$	2.0
2.2.6	factory labor	\$	400	module	25,896	\$	10.4
2.2.7	module shipping	\$	75	module	25,896	\$	1.9
2.3.1	PMTs	\$	11.00	ch	679,680	\$	7.5
2.3.2	Readout boxes	\$	125.00	pmt	25,896	\$	3.2
2.3.3	Frontend chips	\$	5.30	ch	679,680	\$	3.6
2.3.4	HV	\$	100.00	pmt	25,896	\$	2.6
2.3.5	Fab/base	\$	225.00	pmt	25,896	\$	5.8
2.3.6	DAQ	\$	2,000,000		1.00	\$	2.0
2.3.7	Control & monitoring	\$	500,000		1.00	\$	0.5
2.4.1	set up SWF	\$	500,000		1.00	\$	0.5
2.4.2	plane SWF	\$	1,680,000	yr	2.70	\$	4.5
2.4.3	support & supervision SWF	\$	420,000	yr	2.70	\$	1.1
2.4.4	receiving/staging SWF	\$	240,000	yr	2.70	\$	0.6
2.4.5	installation oversight	\$	50,000	yr	2.70	\$	0.1
2.5	building	\$	20,000,000		1.25	\$	25.0
2.6	outfitting	\$	2,000,000		1.00	\$	2.0
total						\$	142.0

M64 Rolled Up

2.1	absorber & structure	\$ 17.78
2.2.1	scintillator	\$ 27.33
2.2.2	WLS fiber	\$ 11.98
2.2.3/.4/.5	modules parts	\$ 11.42
2.2.6/.7/.8	modules labor/shipping	\$ 14.30
2.3.1	photodetector	\$ 7.48
2.3.2	FEE/base/housing/HV	\$ 15.26
2.3.x	other elec	\$ 2.50
2.4	installation	\$ 6.95
2.5	building	\$ 25.00
2.6	outfitting	\$ 2.00
2.0	total	\$ 141.99

APD Version

		\$M		
2.1	absorber & structure	\$	17.78	
2.2.1	scintillator	\$	27.33	
2.2.2	WLS fiber	\$	11.98	
2.2.3/.4/.5	modules parts	\$	9.37	
2.2.6/.7/.8	modules labor/shipping	\$	12.09	
2.3.1	photodetector	\$	1.70	
2.3.2	FEE/base/housing/HV	\$	8.38	
2.3.x	other elec	\$	2.50	
2.4	installation	\$	5.79	
2.5	building	\$	25.00	
2.6	outfitting	\$	2.00	
2.0	total	\$	123.91	

Liquid Scintillator

		\$M		
2.1	absorber & structure	\$	17.78	
2.2.1	scintillator	\$	14.22	
2.2.2	WLS fiber	\$	11.98	
2.2.3/.4/.5	modules parts	\$	7.77	
2.2.6/.7/.8	modules labor/shipping	\$	5.71	
2.3.1	photodetector	\$	1.70	
2.3.2	FEE/base/housing/HV	\$	8.38	
2.3.x	other elec	\$	2.50	
2.4	installation	\$	5.79	
2.5	building	\$	25.00	
2.6	outfitting	\$	2.00	
2.0	total	\$	102.83	

Scintillator Issues & Plans

- Continue Cost/Physics Optimization
 - > Longitudinal sampling clearly the cost driver
- Results from the APD test stand
- Continue to pursue options for reducing module component and fabrication costs due to 10x more units